NFSNET

From Mersennewiki
Jump to: navigation, search

NFSNET is a project that uses the GNFS and SNFS factorization methods to completely factor large numbers of interest to the math community. This project is now dead and replaced by NFS@Home.

Status

This project is now dead.

Results

There are some factorizations completed by NFSNET, all of them Cunningham numbers, are summarized below.


Some NFSNet Results
Number Factors
<math>5^{311}+1</math> 13132762900451821968706840158108829466847315743095478589617724372773046827 . P86
<math>5^{313}-1</math> 21428622089774767159447145142284385968882142917892658511907216761741 . P143
<math>5^{311}-1</math> 38695455401981313830913060474530524458380779268946879355849020686413069 . P102
<math>5^{313}+1</math> 90107330782710173585723984396630473536745919968792358417711960610369521 . P126
<math>10^{229}+1</math> 13270807703600518273110858480695033043595534787235597140531 . P106
<math>2^{772}+1</math> 61138085212831760012082560001130966245067663049594184076112874904437731971413080237731822785297556226950049 . P108
<math>6^{283}-1</math> 138457361320915478919381975760508114488979126852819238404548238145324558533 . P99
<math>5^{317}-1</math> 1173266048118996938584719882501239841331337879112270918586790280760729499132694039331 . P110
<math>6^{284}+1</math> 555910000634197662765503723258626898712572755963073679357601281305609 . P100
<math>5^{323}-1</math> 824025642333621472612253607491152025643258690550015151 . 4520075300365525822415973296109200878340148487916084028121991 . P72
<math>2^{779}+1</math> 17315878129048863927974905480696448369723747093035498799994851681384411684778961025249 . P127
<math>10^{239}-1</math> 383155477843726029783939406113226468701730728790004161 . 128780300340244872385688233345188210841783983757299260103530718169486826135819357 . P94
<math>2^{787}-1</math> 171124793552074153093621463907993111755630713094272377046079303 . P142
<math>2^{787}+1</math> 1729064962458961255320417417955691339162974743882218922830411737050563040937 . P93
<math>10^{239}+1</math> 2846390188891241030645451773087716881978563746547069042984813032147999326242449 . P142
<math>12^{227}+1</math> 2166927848376622533621794434244289002299826661900783861848021018401 . P147
<math>6^{298}+1</math> 6695749655192816473070349489448185116388391043325628915861 . P157
<math>7^{271}-1</math> 127962646077173632312199483013809163214497588966415507177987147170392729827682423052701976465899731717 . P113
<math>2^{788}+1</math> 16485261130656200872482989844198639841091212639645236223887409386257443385451391361 . P137
<math>10^{241}-1</math> 6864117620760368762783548070444378476387203247067308861991 . P172
<math>6^{313}-1</math> 1145667266428264694407427870250002852640339971370109925272739002529333927038171 . P149
<math>7^{319}-1</math> 204227297293529257125127118080380016745365752943272818676346275973633953383050572371 . P149
<math>2^{823}+1</math> 165504088394688777341777954213302926706011776596326713780562632126238280022902380359311132880309166125996273 . P122
<math>2^{823}-1</math> 14318463776157273132646318179504157563387487409638575094260074593259322339364163972504114136247 . P103
<math>10^{287}-1</math>

386736023165016911595773048286586040278275120007787504683197800313250373 . P140

<math>3^{523}-1</math>

118660861315644501826386980212508132942915206257779375740236957417866662884621310426338818063 . P141

<math>11^{244}+1</math> 8002889920577273830420851090219258342350712388277918047535820689055103751832471481802997113 . P157
<math>7^{319}+1</math> 3975047917431160297249953259955968186945131148887708281805256392393451 . P154
<math>7^{304}+1</math> 996729992864896297685441229117084324961901633115344675218887271504648958630057425015060925493899201 . P145
<math>10^{269}-1</math> 2211459886311754779116554026679494335670326227547524190235297713426923019604371977151573671 . P143

See also

External links